The Effectiveness of a New Antimicrobial Dressing with Microbinding Action for the Management of Chronic Wounds

By Gary Sibbald, BSc MD, FRCP (Med, Derm) MACP, FAAD Med MACP, Dr. Kevin Y. Woo, PhD RN FAPWCA, Patricia Coutts RN

Abstract
The primary aim of this study was to evaluate the effectiveness of a new antimicrobial dressing. This dressing has a broad spectrum of action, no measurable host cytotoxicity, no currently identified allergenicity and no demonstrated risk of bacterial resistance. The study involved a sample of 14 subjects (8 with diabetic foot ulcers, 6 with venous leg ulcers). Dressings were changed up to 3 times a week for the 4-week study duration. The results were promising with respect to wound surface area reduction and pain improvement. This new antimicrobial dressing stalled chronic wounds with signs of increased bacterial burden.

Introduction
Chronic wounds constitute a major financial burden to society, and have a profound effect on quality of life.¹ The underlying causes of wounds need to be addressed as according to Table 1 but, arguably, localized wound infection (often referred to as critical colonization, increased bacterial burden or covert infection) is 1 of the most common challenges in the treatment of healable wounds.²,³

With the emergence of bacteria that are resistant to commonly used antibiotics or topical antibiotics, the use of topical non-antibiotic antimicrobial agents has become a sensible option for local wound care and surface bacterial damage.³,⁴ Preferred topical agents should have a broad spectrum of activity, relatively low tissue toxicity, low allergenicity and generally not be used systematically. However, with the advent of a plethora of newer topical antimicrobial agents, clinicians are often confused about when and what antimicrobial agents should be used. Many dressings are impregnated with active ingredients (e.g. silver, iodine, chlorhexidine, honey, gentian violet/methylene blue) that are released into the wound in the presence of wound fluid or exudate. Alternatively, a microbinding dressing can entrap and sequester bacteria in its microarchitecture and ultimately inactivate them.

This trial tested an antimicrobial dressing with microbinding action (Cutimed® Sorbact®; Cutimed,

<table>
<thead>
<tr>
<th>Type of chronic ulcer</th>
<th>Cause/aggravating factor</th>
<th>Recommendations for care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous leg ulcer</td>
<td>Dermal edema
 Lipodermatosclerosis associated with venous insufficiency</td>
<td>Compression bandages for healing
 Compression stockings for maintenance
 Compression for life (in the absence of arterial disease or other contraindications)</td>
</tr>
<tr>
<td>Pressure ulcer</td>
<td>Deep ulcers: Abnormal pressure and shear
 Superficial ulcers: Friction and moisture
 Aggravating factors: inactivity, poor nutrition</td>
<td>Relieve, reduce and redistribute pressure
 Increase activity and mobility
 Manage incontinence and moisture
 Reduce shear and friction
 Optimize nutrition</td>
</tr>
<tr>
<td>Diabetic foot ulcer (callus = pressure; blister = friction and shear)</td>
<td>Loss of protective sensation
 Aggravating factors: infection, ischemia, deformity</td>
<td>Ensure an adequate vascular supply
 Control infection
 Redistribute plantar pressure</td>
</tr>
</tbody>
</table>

Table 1
Causes of common chronic ulcers and recommendations for care

(152x248)

TABLE 1

Preferred topical agents should have a broad spectrum of activity, relatively low tissue toxicity, low allergenicity and generally not be used systematically. However, with the advent of a plethora of newer topical antimicrobial agents, clinicians are often confused about when and what antimicrobial agents should be used. Many dressings are impregnated with active ingredients (e.g. silver, iodine, chlorhexidine, honey, gentian violet/methylene blue) that are released into the wound in the presence of wound fluid or exudate. Alternatively, a microbinding dressing can entrap and sequester bacteria in its microarchitecture and ultimately inactivate them.

This trial tested an antimicrobial dressing with microbinding action (Cutimed® Sorbact®; Cutimed,
Boucherville, QC). The dressing is composed of meshed cellulose acetate that reduces the risk of tissue ingrowth and minimizes trauma and pain upon dressing removal. It is available with dressing components, including 1 with an absorbent core to handle moderate to heavy exudation. As a unique feature, the surface of the dressing is coated with a natural fatty acid: dialkyl carbamoyl chloride, which has hydrophobic properties (Figure 1). In the moist environment of an infected wound, microorganisms are attracted to the dressing, where they become immediately and irreversibly bound to it by the hydrophobic interaction (Figures 2 and 3). This antimicrobial dressing can be used in conjunction with other topical agents, providing they do not contain fatty substances (e.g. ointment dressings).

The effectiveness of the antimicrobial dressing with microbinding action has been demonstrated in a number of studies, including a multicentre investigation that involved 116 patients. In addition, its binding capacity has been tested in an in vitro study; within the first 30 seconds the dressing started to bind with *Staphylococcus aureus* and *Pseudomonas aeruginosa*, with increased binding after 10 minutes. Maximal binding was observed at 120 minutes, when 107 out of 108 inoculums had bound to the dressing.

Description

This clinical study enrolled a total of 16 patients, with 14 completing the study. One patient withdrew consent prior to dressing application and another patient developed an uncontrolled systemic inflammatory process after study entry (necrobiosis lipoidica of the deep dermis), which was unrelated to the local dressing application. The process subsequently evolved into an aggressive deep infection requiring intravenous antibiotics and study discontinuation. The evaluable subjects were 18–85 years of age (mean 60.8 years), with 13 men and 1 woman. All wounds were chronic (>1 month) and the patients had received treatment of the underlying cause (Table 1), along with local wound care as outlined in the paper by Sibbald and colleagues. Eligibility criteria included an adequate blood supply to heal (ankle brachial pressure index >0.5), no uncontrolled systemic disease and the absence of medication that would prevent healing. Written informed consent was obtained from all participants.

The dressings were changed up to 3 times a week for period of 4 weeks. All subjects were evaluated at weeks 0, 2 and 4 (at the end of the study). Where appropriate, debris within the ulcer was debrided with curette, scissors or scalpel blade. Wound surface areas were estimated by the longest wound length and wound width that were perpendicular to each other. Wound-related pain was evaluated by using an 11-point numeric rating scale. The characteristics of the wound base and surrounding skin were evaluated.

Results

Improved healing was demonstrated in all subjects (Figure 4), except for 4 who had several factors for delayed healing, including complex coexisting diseases and poor adherence to a pressure-offloading device. The cumulative patient total average surface area reduced from 1.74 at visit 1 to 1.15 cm² at visit 4 (t=0.998; df 14; p=0.337) (Figure 5). The mean pain level improved from 3 to 2.07, respectively, on a scale of 1–10 (t=1.54; df 14; p=0.145) (Figure 6). There was no significant difference in the NERDS and STONEES checklist criteria for signs of superficial or deep infection. The dressing was easy to apply and remove. No serious adverse events were reported.

FIGURE 1

The hydrophobic dressing coating.

FIGURE 2

Hydrophobic interaction: Sequestering bacteria, preventing them from causing further localized tissue damage.

FIGURE 3

Staphylococcus aureus and *Pseudomonas aeruginosa* bound to the dressing.

Gary Sibbald,
Professor of Medicine and Public Health, University of Toronto, Toronto
Director of the International Interprofessional Wound Care Course and Master of Science in Community Health (Prevention and Wound Care), Della Lana School of Public Health, University of Toronto, Toronto
President of the World Union of Wound Healing Societies

Dr. Kevin Y. Woo,
Assistant Professor, School of Nursing, Queen’s University, Kingston, Ontario
Wound Care Consultant, West Park Healthcare Centre, Toronto
Associate Director, Interprofessional International Wound Care Course, University of Toronto, Toronto

Patricia Coutts,
Wound Care and Clinical Trials Coordinator, Debary Dermatologicals, Mississauga, Ontario

Table 1

<table>
<thead>
<tr>
<th>Description of Toronto</th>
<th>Toronto</th>
<th>Wound Care and Clinical Courses, University of Toronto, Toronto</th>
</tr>
</thead>
<tbody>
<tr>
<td>patent total average surface area reduced from 1.74 at visit 1 to 1.15 cm² at visit 4 (t=0.998; df 14; p=0.337) (Figure 5). The mean pain level improved from 3 to 2.07, respectively, on a scale of 1–10 (t=1.54; df 14; p=0.145) (Figure 6). There was no significant difference in the NERDS and STONEES checklist criteria for signs of superficial or deep infection. The dressing was easy to apply and remove. No serious adverse events were reported.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Persons with chronic wounds often experience stalled wound healing because of local wound-related factors, even after the cause of the wound has been corrected and patient-centred concerns addressed. With adequate debridement and moisture balance achieved, wound healing can still be delayed due to persistent and abnormal inflammation and/or bacterial damage of both the superficial and deep compartments.

One way to neutralize the surface damage is to sequester the bacteria and their related inflammatory mediators. This meshed dressing with bound fatty acids is able to absorb harmful exudate with associated bacteria and inflammatory mediators. In this clinical study there was a trend toward wound surface area reduction over a 4-week period, indicating improvement of the bacterial-related stalled healing response. Pain (which has been associated with wound critical colonization and infection) also improved over time, indicating the dressing neutralized surface inflammation. The ability of the antimicrobial dressing with microbinding action to reduce pain symptoms has also been demonstrated in other studies.

The results of this study demonstrate a link between the antimicrobial dressing with microbinding action properties and a tendency to reduced wound surface area and chronic-wound-associated pain.

References

When wounds are trapped in the inflammatory phase, debridement is not complete...
Lorsque les plaies sont piégées dans la phase inflammatoire, le débridement n’est pas complet...

Break the Cycle • Brisez le cycle

Even after sharp or surgical debridement, inflammatory processes can continue to generate microscopic cellular debris

Even after sharp or surgical debridement, inflammatory processes can continue to generate microscopic cellular debris

Collagenase SANTYL® Ointment selectively targets collagen without harming healthy tissue

Continuous, active micro-debridement with SANTYL®
Ointment can help wounds progress from the inflammatory to the proliferative phase of healing

Visit www.santyl.ca for more details.

Occasional slight transient erythema has been noted in surrounding tissue when applied outside the wound. One case of systemic hypersensitivity has been reported after 1 year of treatment with collagenase and cortisone.

Use of Collagenase SANTYL® Ointment should be terminated when debridement is complete and granulation tissue is well established.

Please see complete Prescribing Information on adjacent page.

On a noté un érythème occasionnel et léger sur les tissus environnants lorsque l’application de l’onguent dépasse le pourtour de la plaie. Un cas d’hypersensibilité systémique a été rapporté après un an de traitement à la collagénase et à la cortisone.

L’utilisation de l’onguent SANTYL® avec collagénase devrait être cessée lorsque le débridement est complété et que la granulation est bien entamée.

Veuillez consulter l’information posologique complète sur la page adjacente.

[Collagenase Santyl](http://www.healthpoint.com)

Colloïd 250 units/g

The Continuous, Active Micro-Debrider

1-800-441-8227

10128-0310
PRESENTED BY POSITIVE CULTURES
PUS
IN AMMATION OR ODOR
IT IS DESIRABLE TO USE AN APPROPRIATE CLINICAL PHARMACOLOGY:
UNDENATURED COLLAGEN THAT BINDS NECROTIC DEBRIS TO THE WOUND SURFACE (1)
OR TO APPLICATION THE LESIONS SHOULD BE GENTLY CLEANSED WITH A GAUZE PADS SATURATED WITH STERILE NORMAL SALT SOLUTION IN ORDER TO ELIMINATE THE EXUDATE FROM THE WOUND.

INDICATIONS: Santry® (collagenase) is a sterile ointment indicated for the debridement of dermal ulcers or severely burned areas. Application of the ointment should be made only with caution.

ALWAYS:
- Debilitated patients should be closely monitored for systemic bacterial infections because of the theoretical possibility that debridging enzymes may increase the risk of bacteremia.
- The enzyme’s optimal pH range is 6 to 8. Significant lower pH conditions have a definitive adverse effect on the enzyme’s activity, and appropriate precautions should be carefully taken.
- The enzymatic activity is also adversely affected by detergents, hexachlorophene and heavy metal ions such as mercury and silver that are used in some antiseptics and by cobalt, magnesium and manganese.
- When it is suspected such materials have been used, the site should be carefully cleansed by repeated washings with normal saline before Santry® (collagenase) ointment is applied. Soaks containing metal ions or acidic solutions such as Burrow’s solution should be avoided because of the metal ion and low pH.
- Cleansing materials such as hydrogen peroxide or Dakin’s solution followed by sterile normal saline do not interfere with the activity of the enzyme. The ointment should be confined to the area of the lesion in order to avoid the possible risk of irritation or maceration of normal skin; however, the enzyme does not damage newly forming granulation tissue. A slight erythema has been noted occasionally in the surrounding tissue in particular when the enzyme ointment was not confined to the lesion. This can be readily controlled by protecting the healthy skin with a material such as zinc oxide paste. Since the enzyme is a protease, sensitivity may develop with prolonged use.

ADVERSE REACTIONS: Although no allergic sensitivity or toxic reactions have been noted in the recorded clinical investigations to date, one case of systemic manifestations of hypersensitivity has been reported in a patient treated for more than one year with a combination of collagenase and cortisone.

SYMPTOMS AND TREATMENT OF OVERDOSAGE: Symptoms: To date, the irritation, maceration or erythema reported on prolonged contact of normal skin with Santry® (collagenase) ointment has been allowed, either by application of the ointment to areas of normal skin or by excessive application of ointment to the wound crater with subsequent spread to normal skin when dressings are applied. The reported incidence for this type of reaction was 1.8%.

DOSAGE AND ADMINISTRATION: For external use only. Santry® (collagenase) ointment should be applied once daily, or more frequently if the dressing becomes soiled (as from incontinence) in the following manner: (1) Prior to application the lesions should be gently cleansed with a gauze pad saturated with sterile normal saline, to remove any film and digested material. If a stronger cleansing solution is required, hydrogen peroxide or Dakin’s solution may be used, followed by sterile normal saline. (2) Wherever infection is present, as evidenced by positive cultures, pus, inflammation or odor, it is desirable to use an appropriate antibacterial agent. Should the infection not respond, therapy with Santry® (collagenase) ointment should be discontinued until remission of the infection. (3) Santry® (collagenase) ointment should be applied (using a tongue depressor or spatula) directly to deep wounds, or when dealing with shallow wounds, to a non-adherent dressing or film dressing which is then applied to the wound. The wound is covered with an appropriate dressing such as a sterile gauze pad and properly secured. (4) Use of an occlusive or semi-occlusive dressing may promote softening of eschar, if present. Alternatively, crosshatch thin eschar with a #11 blade is helpful in speeding up debridement then cleanse with sterile saline. It is also desirable to remove as much loosened detritus as can be done readily with forceps and scissors. (5) All excess ointment should be removed each time the dressing is changed. (6) Use of Santry® (collagenase) ointment should be terminated when debridement of necrotic tissue is complete and granulation is well under way.

Product monograph available upon request.